Solutions

Problem 1. Let M'N' and P'Q' be two segments perpendicular to BD at a distance d. We need to prove that the perimeters AMNCQP and AM'N'CQ'P' are equal. Denote by S' the projection of N into M'N' and by S the projection of P' into PQ. The triangles NS'N' and P'SP are equal. (right triangles such that NS' = P'S and equal angles \angle P'PS = \angle NN'S'.) So PP' = NN'. Since it is clear that MM' = NN', we have MM' = NN' = PP' = QQ'. On the other hand, since SP = S'N', using T' and T the projections of M and Q' into M'N' and PQ, respectively, we have

$$T'M' = S'N' = PS = TQ.$$

So
$$P'Q' + M'N' = ST + M'T' + T'S' + S'N'$$

= $ST + PS + TQ + MN$
= $PQ + MN$.

(Without loss of generality M' lies between M and A) So the perimeter of AMNCQP is:

$$AM + MN + NC + CQ + QP + PA = \\ AM' + M'M + MN + NN' + N'C + CQ + QP + PA = \\ AM' + PP' + MN + QQ' + N'C + CQ + QP + PA = \\ AM' + MN + QP + PP' + PA + QQ' + CQ + N'C = \\ AM' + MN + QT + TS + SP + PP' + PA + QQ' + CQ + N'C = \\ AM' + M'T ' + T'S' + S'N' + N'C + CQ + QQ' + Q'P' + P'P + PA = \\ AM' + M'N' + N'C + CQ' + Q'P' + P'A,$$

which is the perimeter of AM'N'CQ'P'.

Points to be given for showing that:

$$MM' = NN' = PP' = QQ'$$

1 point

$$T'M' = S'N' = PS = TQ.$$

1 point

$$P'Q' + M'N' = PQ + MN.$$

2 points

The perimeter of AMNCQP is the same as the perimeter of AM'N'CQ'P'

3 points

Problem 2. We first prove by induction on n that:

$$\frac{(m+n)!}{(m-n)!} = \prod_{i=1}^{n} (m^2 + m - i^2 + i).$$

$$1. \frac{(m+1)!}{(m-1)!} = m(m+1) = m^2 + m.$$

2.
$$\frac{(m+n+1)!}{(m-n-1)!} = \left(\prod_{i=1}^{n} (m^2+m-i^2+i)\right)(m+n+1)(m-n)$$
 (by induction)

$$= \left(\prod_{i=1}^{n} (m^2 + m - i^2 + i)\right) (m^2 + m - n^2 - n)$$

$$= \prod_{i=1}^{n+1} (m^2 + m - i^2 + i)$$
But $m^2 + m \ge m^2 + m - i^2 + i \ge i^2 + i - i^2 + i = 2i$, for $i \ge m$.

Therefore

$$2^n n! \le \frac{(m+n)!}{(m-n)!} \le (m^2+m)^n.$$

Points to be given for showing that:

the innequlities hold for special values

up to 1 point

$$\frac{(m+n)!}{(m-n)!} = \prod_{i=1}^{n} (m^2 + m - i^2 + i)$$
 for all n 4 points

 $m^2 + m \ge m^2 + m - i^2 + i \ge i^2 + i - i^2 + i = 2i$, for $i \ge m$, and therefore the innequalities hold

2 points

Problem 3. Let C be the given circle. Draw four circles C_{12} , C_{23} , C_{34} , C_{41} with centers O_{12} , O_{23} , O_{34} , O_{41} respectively, on the circle C such that C_{12} passes through P_1 and P_2 , C_{23} passes through P_2 and P₃, C₃₄ passes through P₃ and P₄, C₄₁ passes through P₄ and P₁. Let the other point of intersection of C₁₂ and C₂₃ be Q₄, the other point of intersection of C₂₃ and C₃₄ be Q₁, the other point of intersection of C_{34} and C_{41} be Q_2 , and the other point of intersection of C_{41} and C_{12} be Q_3 . Then

$$\angle Q_4 P_1 P_2 = \frac{1}{2} \angle Q_4 O_{12} P_2$$
 and $\angle O_{23} P_1 P_2 = \frac{1}{2} \angle P_3 O_{12} P_2$.

Clearly, O_{23} , Q_4 and P_1 are collinear.

It follows that $\angle Q_4Q_3P_2 = \angle Q_4P_1P_2 = \angle O_{23}P_1P_2 \angle O_{23}O_{41}P_2$. Since also O_{41} , O_{41} and O_{42} are

collinear, it follows that Q_3Q_4 and $O_{41}O_{23}$ are parallel.

Since O_{ij} bisects The arcs $P_i P_j$, for (i, j) = (1, 2), (2, 3), (3, 4), (4, 1) we conclude that $O_{41} O_{23}$ and O_{12} O_{34} are perpendicular, and hence Q_3 Q_4 and O_{12} O_{34} are perpendicular.

Since both (O_{12}, Q_3, P_4) and (O_{12}, Q_4, P_3) are collinear triples of points, we have $\angle P_4O_{12}P_3 = \angle P_4O_{12}P_3 = A_1O_{12}P_3$

 $Q_3O_{12}Q_4$, and this angle is bisected by $O_{12}O_{34}$.

Thus Q_3 and Q_4 are reflections through the axis $O_{12}O_{34}$, and so are, by a similar argument Q_1 and

We have thus shown: Q1, Q2, Q3, Q4 form a rectangle. But as Q4 lies on both the angle bisector O₁₂P₃ and the angle bisector O₂₃P₁ of the triangle P₁P₂P₃, the point Q₄ must coincide with the incenter I_4 of the triangle $P_1P_2P_3$, and by a similar argument, $Q_1 = I_1$, $Q_2 = I_2$ and $Q_3 = I_3$.

Points to be given for showing that

$$Q_3Q_4$$
 and $O_{41}O_{23}$ are parallel 2 points Q_3Q_4 and $O_{12}O_{34}$ are perpendicular 1 points Q_1, Q_2, Q_3, Q_4 form a rectangle 2 points $Q_4 = I_4, Q_1 = I_1, Q_2 = I_2$ and $Q_3 = I_3$ 1 point

Problem 4.. We may assume that the n couples will form x male groups and y female groups. Without loss of generality, let $x \ge y$, and

(*)
$$x + y = 17$$
.

Then, by the pigeonhole theorem, there exists a male group of size $\leq \left[\frac{n}{x}\right]$ and a female group of size $\geq \left[\frac{n}{y}\right]$. By condition (2), we have $\binom{n}{y} - \binom{n}{y} \leq 1$

From the conditions x + y = 17 and $x \ge y$ follows that $x \ge 9$, and $y \le 8$, which in turn implies

$$\left[\frac{n}{y}\right] - \left[\frac{n}{x}\right] > \left[\frac{n}{8}\right] - \left[\frac{n}{9}\right]$$

Therefore, we only need to exclude those n such that $\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1$. Let n = 9u + s, $0 \le s < 9$. Then

$$\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1 \iff \left[\frac{u+s}{8}\right] > 1.$$

By analyzing this condition it is clear that the only values of n that are allowed are $n=9,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 18,\ 19,\ 20,\ 21,\ 22,\ 23,\ 24,\ 27,\ 28,\ 29,\ 30,\ 31,\ 32,\ 36,\ 37,\ 38,\ 39,\ 40,\ 45,\ 46,\ 46,\ 47,\ 48,\ 54,\ 55,\ 56,\ 63,\ 63,\ 72.$

Conversely, conditions (*) and (**) give rise to a set of discussing groups according to the following description:

Let
$$\left[\frac{n}{x}\right] = p$$
 and $\left[\frac{n}{y}\right] = q$, then $p \le q \le p + 1$

We have

$$n = px + \alpha$$
, $0 \le \alpha < x$ and $n = qy - \beta$ $0 \le \beta < y$.

So we can arrange the males in α discussing groups of size p+1 and $x-\alpha$ groups of p elements. The females are distributed in β discussing groups of size q-1, and $(y-\beta)$ discussing groups of size q.

Points to be given for showing that

$x \ge 9$, and $y \le 8$	1 points
---------------------------	----------

one only needs to exclude those n such that
$$\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1$$
 2 points

given p and q as described in the solution one can arrange the males in
$$\alpha$$
 discussion groups of size $p+1$ and $x-\alpha$ groups of p elements and the females in β discussion groups of size $q-1$, and $(y-\beta)$ groups of size q .

Problem 5. Without loss of generality we can assume that $a \ge b \ge c$. Note that if $x \ge y > 0$, then $\sqrt{y} \le 1/2(\sqrt{x} + \sqrt{y})$, i.e.,

$$\frac{1}{2\sqrt{y}}(\sqrt{x} + \sqrt{y}) \ge 1$$

Similarly, if $y \ge x > 0$, then

$$\frac{1}{2\sqrt{y}}(\sqrt{x} + \sqrt{y}) \le 1$$

Multiplying both inequalities by $\sqrt{x} - \sqrt{y}$ we obtain

$$\sqrt{x} - \sqrt{y} \le \frac{1}{2\sqrt{y}}(x - y),$$

for every x, y > 0. Moreover, it is easily seen that equality occurs if and only if x = y. By applying this last inequality we obtain

$$\sqrt{a+b-c} - \sqrt{a} \le \frac{1}{2\sqrt{a}}(b-c)$$

(**)
$$\sqrt{c + a - b} - \sqrt{b} \le \frac{1}{2\sqrt{b}} (c + a - 2b)$$

$$\sqrt{b + c - a} - \sqrt{c} \le \frac{1}{2\sqrt{c}} (b - a)$$

and by adding up the left hand and the right hand sides of these inequalities we have

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} - \left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right)$$

$$\frac{1}{2} \left(\frac{1}{\sqrt{a}}(b-c) + \frac{1}{\sqrt{b}}(c+a-2b) + \frac{1}{\sqrt{c}}(b-a)\right)$$

$$\frac{1}{2} \left((b-c)\left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}}\right) + (a-b)\left(\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{c}}\right)\right) \le 0,$$

i.e.,

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \le \sqrt{a} + \sqrt{b} + \sqrt{c},$$

and equality occurs if and only if the three relations in (**) are equalities, i.e., if and only if a = b = c.

Points to be given for showing that

$$\sqrt{x} - \sqrt{y} \le \frac{1}{2\sqrt{y}}(x - y)$$

the relations in (**) hold true

1 point each

2 points

$$\sqrt{a+b-c}$$
 + $\sqrt{b+c-a}$ + $\sqrt{c+a-b}$ - $\left(\sqrt{a}$ + \sqrt{b} + \sqrt{c} $\right)$ \leq

1 point

equality occurs if and only if the three relations in (**) are equalities, i.e., if and only a = b = c

1 point